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The dynamic behaviors of a two-degrees-of-freedom rigid body with vibrating support are
studied in this paper. Both analytical and computational results are employed to obtain the
characteristics of the system. By using the Lyapunov direct method the conditions of
stability of the relative equilibrium position can be determined. The incremental harmonic
balance method (IHB) is used to "nd the stable and unstable periodic solutions for the
strongly non-linear system. By applying various numerical results such as phase plane,
PoincareH map, time history and power spectrum analysis, a variety of periodic solutions and
the phenomena of the chaotic motion is presented. The e!ects of the changes of parameters
in the system can be found in the bifurcation diagrams. Further, the chaotic behavior is
veri"ed by using Lyapunov exponents. The modi"ed interpolated cell mapping method
(MICM) is used to study the basins of attraction of periodic attractors and the fractal
structure. Besides, additions of a constant torque, a periodic torque, addition of dither
signals, delayed feedback control, adaptive control, and bang}bang control are used to
control the chaos phenomena e!ectively.
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1. INTRODUCTION

In the dynamics of a rigid body with a "xed point, the mechanics in question has three
degrees of freedom. In engineering system, however, one often encounters a rigid body
attached to the base by two-degrees-of-freedom joint, consisting of a vertical axis and
a horizontal one, which are mutually perpendicular. The motion of such a system with
vibration of support will be considered in the paper, where the only external moments is
that of the gravitational force.

2. EQUATIONS OF MOTION

A rigid body, shown in Figure 1, has a rotating support with mutually perpendicular axes
[1}3]. The motion will be described in terms of two sets of Cartestian co-ordinates:
X

1
X

2
X

3
and a moving co-ordinate system x

1
x
2
x
3

rigidly attached to the rigid body, called
body axis. The origin of both co-ordinate systems are at the point of intersection O of the
joint axes; X

3
- and x

1
-axis are the "xed and moving axes of the joint, respectively. All the

kinematical possibility of the body relative to the inertial co-ordinates X
1
X

2
X

3
may be

described in terms of two angles: the angle a between the X
1
- and x

1
-axis, and the angle

b between the x
2

and X
1
X

2
plane. The angles a and b, which will be taken as generalized
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Figure 1. A schematic diagram of the rigid body.
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co-ordinate, may be treated as the angles of two successive rotation through which one can
transfer the rigid body from its initial position (a"b"0, the moving system of co-ordinate
coincides with the "xed one) to the present position. The "rst rotation, through the angle a,
takes place about the X

3
-axis (the "xed vertical axis of the joint) and is described by the

matrix

Ca"
cos a sin a 0

!sin a cos a 0

0 0 1

.

The second rotation, through the angle b, takes place about the x
1
-axis, one of the body

axes of the joint and corresponds to the matrix.

Cb"
1 0 0

0 cos b sin b

0 !sin b cos b

.

The transformation matrix from X
1
X

2
X

3
co-ordinates to x

1
x
2
x
3

co-ordinates is the
product C"CaCb .

Let u
i
denote the projection of the angular velocity vector u of the body onto the x

i
(i"1, 2, 3) axis. The kinematics equations expressing the components u

i
in the generalized

co-ordinates b, and the generalized velocities aR and bQ are

u
1
"bQ , u

2
"aR sin b, u

3
"aR cos b. (1)

The kinetic energy of the motion of a rigid body with a "xed point is

¹"1
2
[-]T[J][-], (2)

where [J] is the inertia tensor of the body relative to the "xed point, and
[-]T"[u

1
, u

2
, u

3
].
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Expanding the scalar product in equation (2) taking equation (1) into account, we obtain

KE"1
2
K(b)aR 2#1

2
J
11

bQ !b (b)aR bQ , (3)

where

K (b)"J
22

sin2 b#J
33

cos2 b!J
23

sin 2b,

b (b)"J
12

sin b#J
13

cos b,

with J
ii

(i"1, 2, 3) being the axial moment of inertia and J
ij
"J

ji
(iOj, i, j"1, 2, 3) the

product of inertia of the body in x
1
x
2
x
3

co-ordinates.
The potential energy of the motion of the rigid body in system X

1
X

2
X

3
is

PE"mg
0
h (1#cos b), (4)

where m is the mass of body, h is the distance between center of mass and the "xed point.
The Lagrangian of the system has the expression

¸"1
2
K (b)aR 2#1

2
J
11

bQ 2!b (b)aR bQ !mg
0
h (1#cos b). (5)

The Lagrange's equation corresponding to equation (5) with damping is

K(b)aK!b(b)bG#Z(b)aR bQ !J(b)bQ 2"!k
1
aR , (6)

J
11

bG!b (b)aK!1
2
Z(b)aR 2!mg

0
h sin b"!k

2
bQ , (7)

where k
1
, k

2
are coe$cients of damping, and

Z (b)"(J
22
!J

33
) sin 2b!2J

23
cos 2b,

J(b)"J
12

cos b!J
13

sin b.

By equations (6) and (7), we have

A(b)bG#b (b)Z(b)aR bQ !b(b)J(b)bQ 2#b (b)k
1
aR !1

2
K(b)Z(b)aR 2

!K (b)mg
0
h sin b#K(b)k

2
bQ "0, (8)

A(b)aK#Z(b)J
11

aR bQ !J(b)J
11

bQ 2#J
11

k
1
a5 !1

2
b(b)Z(b)aR 2

!b (b)mg
0
h sin b#b(b)k

2
bQ "0, (9)

where

A(b)"K(b)J
11
!b2(b).

Changing the time scale to q"u
n
t, equations (6) and (7) can be written in dimensionless

form.
De"ne

u2
n
"

mg
0
h

J
11

.
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Equations (6) and (7) become

aK!
b (b)

K (b)
bG#

Z (b)

K (b)
aR bQ !

J (b)

K(b)
bQ 2#

kM
1

K (b)
aR "0, (10)

bG!
b(b)

J
11

aK!
1

2

Z(b)

J
11

aR 2!sin b#
kM
2

J
11

bQ "0, (11)

where dot notion implies the derivative with respect to q and

kM
1
"

k
1

u
n

, kM
2
"

k
2

u
n

.

The inertial system X
1
X

2
X

3
is now subject to a vertical vibration with acceleration g

0
c sin ut where g

0
is the gravitational acceleration, c the constant and u the given frequency

of vibrating support. Then, equations (10) and (11) become

aK!
b (b)

K (b)
bG#

Z (b)

K (b)
aR bQ !

J (b)

K(b)
bQ 2#

kM
1

K (b)
aR "0, (12)

bG!
b(b)

J
11

aK!
1

2

Z(b)

J
11

aR 2!(1#c sin gq) sin b#
kM
2

J
11

bQ "0, (13)

where g"u/u
n
.

Transform the above equations into following state equations:

xR
1
"

1

A(x
2
) C

1

2
b(x

2
)Z(x

2
)x2

1
#J

11
J (x

2
)x2

3
!J

11
kM
1
x
1
!b (x

2
)kM

2
x
3
!J

11
Z(x

3
)x

1
x
3

#b (x
2
) (1#c sin gq)J

11
sin(x

2
)D ,

xR
2
"x

3
,

xR
3
"

1

A(x
2
) C

1

2
K(x

2
)Z(x

2
)x2

1
#b(x

2
)J(x

2
)x2

3
!b(x

2
)kM

1
x
1
!K(x

2
)kM

2
x
3
!b(x

2
)Z(x

2
)x

1
x
3

#K (x
2
) (1#c sin gq)J

11
sin(x

2
)D , (14)

where x
1
"aKR , x

2
"b and x

3
"bQ .

3. STABILITY ANALYSIS BY LYAPUNOV DIRECT METHOD

The stability in "nite region of the solution of the rigid-body system is investigated by
Lyapunov direct method in this section. There are two equilibrium points, (0, n, 0), (0, 0, 0)
in equations (8) and (9).
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First, consider the stability of the equilibrium point (0, n, 0). Let aR "0#y
1
, b"n#y

2
and bQ "0#y

3
, where y

1
, y

2
, y

3
are small disturbances. Then, transform equations (8) and

(9) above into the following state equations:

yR
1
"

1

A (n#y
2
) C

1

2
b (n#y

2
)Z(n#y

2
)y2

1
#J

11
J (n#y

2
)y2

3
!J

11
k
1
y
1
!b(n#y

2
)k

2
y
3

!J
11

Z(n#y
2
)y

1
y
3
#b(n#y

2
)mg

0
h sin(n#y

2
)D ,

yR
2
"y

3
,

yR
3
"

1

A (n#y
2
) C

1

2
K (n#y

2
)Z(n#y

2
)y2

1
#b (n#y

2
)J(n#y

2
)y2

3
!b (n#y

2
)k

1
y
1

!K (n#y
2
)k

2
y
3
!b (n#y

2
)Z(n#y

2
)y

1
y
3
#K(n#y

2
)mg

0
h sin(n#y

2
)D .

Expanding sin b and cos b as power series, the state equations become

yR
1
"!J

11
k
1
ay

1
#J

13
mg

0
hay

2
#J13k

2
ay

3
# ,2,

yR
2
"y

3
,

yR
3
"J

13
k
1
ay

1
!J

33
mg

0
hay

2
!J

33
k
2
ay

3
# ,2,

where &&2'' means higher order terms and

a"
1

J
11

J
33
!J2

33

.

Construct Lyapunov function as

< (y
1
, y

2
, y

32
)"1

2
J
33

y2
1
#1

2
mg

0
hy2

2
#1

2
J
11

y2
3
#J

13
y
1
y
3
.

By Sylvester's theorem, the su$cient condition for the positive de"niteness of function
<(y

1
, y

2
, y

3
) is

(J
11

J
33
!J2

33
)'0.

The derivative <Q (y
1
, y

2
, y

3
) is given by

<Q (y
1
, y

2
, y

3
) "!k

1
y2
1
!k

2
y2
3
.

Thus, <Q )0 for all (y
1
, y

2
, y

3
) and <Q "0 if and only if y

1
"y

3
"0. We compute the

higher order derivatives of < and "nd

<G"!2k
1
y
1
yR
1
!2k

2
y
3
yR
3
"0,

when y
1
"y

3
"0

<G"!2(k
1
J2
13
#k

2
J2
33

) (mg
0
ha)2y2

2
(0

when y
2
O0.
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From the su$cient conditions of the Mukherjee and Chen theorem [4], we can conclude
the asymptotic stability of the equilibrium point (0, n, 0) of this system.

The stability of the equilibrium point (0, 0, 0) is also considered by Lyapunov direct
method. Let aR "0#x

1
, b"0#x

2
and bQ "0#x

3
, where x

12
, x

2
, x

3
are small

disturbances. Then, transform equations (8) and (9) into the following state equations:

xR
1
"

1

A(x
2
) C

1

2
b (x

2
)Z(x

2
)x2

1
#J

11
J (x

2
)x2

3
!J

11
k
1
x
1
!b(x

2
)k

2
x
3
!J

11
Z(x

2
)x

1
x
3

#b (x
2
)mg

0
h sin(x

2
)D,

xR
2
"x

3
,

xR
3
"

1

A(x
2
)C

1

2
K(x

2
)Z(x

2
)x2

1
#b(x

2
)J(x

2
)x2

3
!b(x

2
)k

1
x
1
!K(x

2
)k

2
x
3
!b(x

2
)Z(x

2
)x

1
x
3

#K(x
2
)mg

0
h sin(x

2
)D .

Expanding sin b and cos b as power series, the state equations becomes

xR
1
"!J

11
k
1
ax

1
#J

13
mg

0
hax

2
!J

13
k
2
ax

3
# ,2,

xR
2
"x

3
,

xR
3
"!J

13
k
1
ax

1
#J

33
mg

0
hax

2
!J

33
k
2
ax

3
# ,2,

where &&2'' means higher order terms and

a"
1

J
11

J
33
!J2

13

.

Construct Lyapunov function as

<(x
1
, x

2
, x

3
)"!1

2
J
33

x2
1
#1

2
mg

0
hx2

2
!1

2
J
11

x2
3
#J

13
x
1
x
3
.

The derivative <Q (x
1
, x

2
, x

3
) is given by

<Q (x
1
, x

2
, x

3
)"k

1
x2
1
#k

2
x2
3
.

Thus, <Q '0 for all x
1
, x

2
, x

3
and <Q "0 if and only if x

1
"x

3
"0. We compute the

higher order derivatives of < and "nd

<G"2k
1
x
1
xR
1
#2k

2
x
3
xR
3
"0,

where x
1
"x

3
"0

<. . ."2(k
1
J2
13
#k

2
J2
33

) (mg
0
ha)2x2

2
'0

for x
2
O0. Also <(0)"0.

From the su$cient conditions of a new theorem recently developed [5], we can conclude
that the equilibrium point (0, 0, 0) of this system is unstable.
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4. BIFURCATION DIAGRAM AND LYAPUNOV EXPONENT

The bifurcation diagrams of the non-linear system of equation (14) are depicted in
Figures 2 and 3. Numerical simulation has been carried out with the following set of
parameter values: J

11
"0)4, J

12
"0)11, J

13
"0)13, J

22
"0)37, J

23
"0)12, J

33
"0)35,

kM
1
"0)15, kM

2
"0)15 and g"0)12. They are plotted against the amplitude of the vibrating
Figure 2. Bifurcation diagram c versus b for one attractor.

Figure 3. Bifurcation diagram c versus b for another attractor.



Figure 4. Lyapunov exponents for c between 2)5 and 3)1 for attractor shown in Figure 2.
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acceleration c3[2)5, 3)1]. It is worth mentioning that there are two di!erent attractors as
the parameter c varied. Figures 2 and 3 present two di!erent bifurcation diagrams for two
di!erent initial conditions. Periodic-doubling routes to chaos of our system will be shown
by the bifurcation diagram.

The Lyapunov exponent calculation algorithm can serve as criteria for detecting the
chaotic motion: a system is chaotic when there exists at least one positive Lyapunov
exponent [6]. The signs of the Lyapunov exponents provide a qualitative picture of
a system dynamics. The criterion is

j'0 (chaotic), j)0 (regular motion).

The Lyapunov exponents of the solutions of this non-linear dynamical system are plotted
in Figures 4 and 5. It can be compared with bifurcation diagrams, Figures 2 and 3, for the
two attractors.

5. PHASE PORTRAITS, POINCARED MAP AND POWER SPECTRUM ANALYSIS

A valuable description of a solution is obtained by examining its behaviour in the phase
plane. When the solution becomes stable, the asymptotic behaviors of the phase trajectories
are of particular interest and the transient behaviors in the system are neglected. The
PoincareH map is a method which can simplify phase portrait of complicate systems. The
phase portraits and PoincareH map are shown in Figures 6 and 7 for two attractors
respectively.

The power spectrum analysis of the non-linear dynamical system, equation (14), are
shown in Figure 8 for c"3)03. The noise-like spectrum, in Figure 8, is characteristic of
chaotic dynamical system. The chaotic spectrum is a continuous broadband one. Although



Figure 5. Lyapunov exponents for c between 2)5 and 3)1 for attractor shown in Figure 3.

Figure 6. PoincareH maps and phase portraits for attractor shown in Figure 2. (a) 1T, (b) 2T, (c) 4T, (d) chaos.
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Figure 7. PoincareH maps and phase portraits for attractor shown in Figure 3. (a) 1T, (b) 2T, (c) 4T, (d) chaos.

Figure 8. Time history and power spectrum for c"3)03.
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a broadband spectrum does not guarantee sensitivity to initial conditions, it is still a reliable
indicator of chaos.

6. INCREMENTAL HARMONIC BALANCE METHOD

The IHB method is a combination of the incremental method with the harmonic balance
method. The steady state periodic solutions of equation (14) are obtained by the IHB
method, which can deal with strong non-linearity very well and is convenient for computer
implementation [7}10].

From equations (12) and (13), let q
1
"Xq, the equations become

X2xR
1
"

1

A(x
2
) C

1

2
b(x

2
)Z (x

2
)X2x2

1
#J

11
J (x

2
)X2x2

3
!J

11
k
1
Xx

1
!b (x

2
)k

2
Xx

3

!J
11

Z(x
2
)X2x

1
x
3
#b (x

2
) (1#c sin q)J

11
sin(x

2
)D

xR
2
"x

3
,

X2xR
3
"

1

A (x
2
) C

1

2
K(x

2
)Z(x

2
)X2x2

1
#b (x

2
)J (x

2
)X2x2

3
!b (x

2
)k

1
Xx

1
!K(x

2
)k

2
Xx

3

!b(x
3
)Z(x

2
)X2x

1
x
3
#K (x

2
) (1#c sin q)J

11
sin(x

2
)D . (15)

The "rst step of the IHB method is a Newton}Raphson procedure. Let X
0
, x

10
, x

20
, x

30
and c

0
be a solution, the neighbouring state can be expressed by adding the corresponding

increments to them as follows:

x
1
"x

10
#Dx

1
, x

2
"x

20
#Dx

2
, x

3
"x

30
#Dx

3
,

c"c
0
#Dc, X"X

0
#DX. (16)

Substituting equation (16) into equation (15) and neglecting the small terms of higher
order, the linearized incremental equation can be derived as

A(x
20

)X2
0
DxR

1
#(M

1
#J

11
k
1
X

0
)Dx

1
#M

2
Dx

2
#M

3
Dx

3
"M

4
DX#M

5
Dc#M

6
,

DxR
2
!Dx

3
"x

30
!xR

20
,

A(x
20

)X2
0
DxR

3
#M

7
Dx

1
#M

8
Dx

2
#M

9
Dx

3
"M

10
DX#M

11
Dc#M

12
. (17)

For convenience, equation (17) can be rewritten in matrix form as

GDX0 #KDX"R#FDX#D
1
Dc, (18)

where DX"[Dx
1

Dx
2

Dx
3
]T and M

1
, M

2
, M

3
, M

4
, M

5
, M

6
, M

7
, M

8
, M

9
, M

10
, M

11
, M

12
,

G, K, R, F, D1 are given in Appendix A. The corrective vector R in equation (18) plays an
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important role. It prevents the incrementation process drifting from the exact solution. The
corrective term R goes to zero when the solution is reached. Since one is primarily interested
in the phase portraits of the system for a constant frequency and the amplitude of the
vibrating acceleration, c and X are "xed as a parameter vector, which imply Dc"DX"0.
Hence, equation (18) is reduced to

GDX0 #KDX"R. (19)

The second step of the IHB method is Galerkin's procedure. For steady state response, an
approximate periodic solution may be assumed as

x
1
"

N
+
j/0
Aaj cos

j

q
q
I
#b

j
sin

j

q
q
IB"DA,

Dx
1
"

N
+
j/0
ADa

j
cos

j

q
q
I
#Db

j
sin

j

q
q
IB"DDA,

x
2
"

N
+
j/0
Acj cos

j

q
q
I
#d

j
sin

j

q
q
IB"DB,

Dx
2
"

N
+
j/0
ADc

j
cos

j

q
q
I
#Dd

j
sin

j

q
q
IB"DDB,

x
3
"

N
+
j/0
Aej cos

j

q
q
I
#f

j
sin

j

q
q
IB"DC,

Dx
3
"

N
+
j/0
ADe

j
cos

j

q
q
I
#D f

j
sin

j

q
q
IB"DDC,

where D, A, DA, B, DB, C and DC are given in Appendix A.
Hence, the vectors of unknown solutions and their increments can be written as

X
0
"PQ, DX"PDQ, (20, 21)

where

P"

D 0 0

0 D 0

0 0 D

, Q"[A B C]T and DQ"[DA DB DC]T.

Putting equations (20) and (21) into equation (19), and applying the Galerkin procedure, we
have

dDQTGP
2n

0

PT[GP0 #KP] dqH DQ"dDQT GP
2n

0

PTR dqH (22)

or simplify

MDQ"R1 ,
(23)

where M and R1 are given in Appendix A.



Figure 9. The solutions of IHB: (a) 1T, (b) 2T, (c) 4T. Compare with Figure 6.
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An initial solution should "rst be given in the process of solving equation (19). At
every iteration process, we proceed to solve this equation until the following criterion is
satis"ed:

ER1 E)e,

where ER1 E is the magnitude of the corrective vector R1 and e is the tolerance depending on
the accuracy required.

The phase portraits obtained by the IHB method in comparison with those obtained by
numerical integration are shown in Figures 9(a)}9(c) and 10(a)}10(c), in which the symbol
&&o'' indicates the solution obtained by IHB. These solutions are in good agreement. The
bifurcation diagrams by IHB method are shown in Figures 11 and 12 which can be
compared with Figures 2 and 3.

7. MODIFIED INTERPOLATED CELL MAPPING METHOD

It is well known that di!erent initial conditions may lead to di!erent attractors when the
governing di!erential equations are non-linear. Hence, "nding a method to determine
which solution will occur for a given initial condition is the major task. The attractors and
corresponding basins of attraction of the system can be found by the modi"ed interpolated
cell mapping method (MICM) [11], which improved from interpolated cell mapping
method [12].



Figure 10. The solutions of IHB: (a) 1T, (b) 2T, (c) 4T. Compare with Figure 7.

Figure 11. Bifurcation diagram by IHB method. Compare with Figure 2.
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Figure 12. Bifurcation diagram by IHB method. Compare with Figure 3.
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For three-dimensional system, 3033 cells are studied by modi"ed interpolated mapping
method, where 303 is the number of the total cells divided in each dimensional region of
interest. The mapping function is a 27818 127 (303]303]303) grid of points distributed in
phase plane by using Runge}Kutta integration algorithm. As the distance between two
trajectories is less than 10~5, it is considered to be periodic.

The results of this dynamical system by the method MICM are depicted in Figures 13}16
respectively. In Figure 13(a), two black dots for c"2)7 indicate that the system has two
attractors and both are period-1T motion. There are three sections, X

1
"!2, 0 and 2, for

the corresponding basins of attraction are shown in Figure 13. The symbols &&)'' (gray area)
and &&]'' (black area) denote the cells attracted by di!erent attractors. If initial conditions
locate at gray area in Figure 13, then this system will tend to the left-side attractor, and the
initial conditions in black area will tend to the right-side attractor. Figures 14}16 show the
phenomena for c"2)85, 2)89 and 2)91, respectively, and the initial conditions in gray area
always tend to the left-side attractor (period-1T).

The special phenomena is called fractal, and the boundary is called fractal basin
boundary. In order to observe it, the structure of the fractal basin boundary is enlarged in
Figures 17(a)and 17(b). Hence, small uncertainties in initial conditions or other system
parameters may lead to uncertainties in the consequence of the state of the non-linear
system.

8. CONTROLLING OF CHAOS BY ADDITION OF A CONSTANT TORQUE

One can even add just a constant torque to control the chaotic behavior to a desired
periodic one in a typical non-linear system. It ensures e!ective controlling in a very simple
ways. Examining the e!ect of the constant torque, the added torque is assumed to be
present in equations (12) and (13). Equations (12) and (13) with the constant torque c

2
can be



Figure 13. (a) The projection of attractors. (b)}(d) Basins of attraction for c"2)7, a"!2, 0, 2.
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written as
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J
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"0.

Consider the e!ect of the constant torque by increasing it from zero upwards, the chaotic
behavior is modi"ed. By using Lyapunov exponents, the parameter that can stabilize the
motion of this system can be found. In Figures 18(a) and 18(b), the maximal Lyapunov
exponents are shown for c"2)91 and 3)1. When the constant torque c

2
is present at certain

intervals, the maximal Lyapunov exponents j
i
)0, it is clear that the system returns to

regular behavior.



Figure 14. (a) The projection of attractors. (b)}(d) Basins of attraction for c"2)85, a"!1, 0, 1.
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9. CONTROLLING OF CHAOS BY ADDITION OF A PERIODIC TORQUE

One can also control system dynamics by the addition of the external periodic torque in
the chaotic state [13]. Equations (12) and (13) with the second periodic torque c

2
sin Xq can

be written as

aK!
b (b)

K (b)
bG#

Z (b)

K (b)
aR bQ !

J (b)

K(b)
bQ 2#

kM
1

K (b)
aR "0,

bG!
b(b)

J
11

aK!
1

2

Z(b)

J
11

aR 2!(1#c sin gq) sin b#
kM
2

J
11

bQ #c
2
sin Xq"0.

When c
2
3[0, 0)1], X"g and c"2)91, detailed structure of maximal Lyapunov

exponent against c
2

is shown in Figure 19(a). When c
2
3[0, 1], XOg and c"3)03, detailed



Figure 15. (a) The projection of attractors. (b)}(d) Basins of attraction for c"2)89, a"!1, 0, 1.
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structure of maximal Lyapunov exponent versus c
2

is shown in Figure19(b). When
the maximal Lyapunov exponents j

i
)0, it is clear that the system returns to regular

behavior.

10. CONTROLLING OF CHAOS BY ADDITION OF DIETHER SIGNALS

In this section, we show that injecting another external input, called a dither signal, into
this chaotic system, just ahead of non-linearity can control the chaos behavior [14]. Using
the dither signal method, we can convert the chaotic motion to a periodic orbit or a steady
state dependent on the system input. This approach is somewhat di!erent from the weak
periodic perturbation method, in which the control parameters (amplitude and frequency)
of the external periodic torque must be adjusted, usually by trial and error. In experimental
situations, if the location of the non-linearity is known, but the system parameters are
unknown and unalterable, only the amplitude of dither signal needs to be tuned.



Figure 16. (a) The projection of attractors. (b)}(d) Basins of attraction for c"2)91, a"!2, 0, 2.
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For this system, let us add a square-wave dither, whose frequency and amplitude are
2000 and 0)2, respectively, in the chaotic system after 100 s. The results are shown in
Figure 20 for c"3)03. The dynamics convert chaotic behavior to periodic motion, as
shown in Figure 20(a). Figure 20(b) and 20(c) shows the phase portrait before and after
control of the system. The drawback of this method is that the response after control is
tuned by trial and error.

11. DELAYED FEEDBACK CONTROL

Let us consider a feedback structure employing a delayed copy of the output signal
[15, 16]. The control signal applied to this system is proportional to the di!erence between
the output and a delayed copy of the same output:

F (q)"K[y (q)!y (q!q
d
)].



Figure 17. (a)}(b) Fractal-like basin of attractor for c"2)91.

Figure 18. The maximal Lyapunov exponent for (a) c"2)91, (b) c"3)1 by addition of constant torque.
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Depending on the delay constant q
d

and linear factor K, various kinds of periodic
behaviors can be observed in the chaotic system. The result, when c"2)91, is shown in
Figures 21(a), 21(b), 21(c) and 21(d) for chaos, 1T, 2T and 4T respectively.

The positive features of the delay feedback control method are, "rst, self-control (no
external signals are injected), and second, that no access to system parameters is required.
The primary drawback of this method is that there is no a priori knowledge of the goal (the
goal is accomplished by trial and error).



Figure 19. (a) The Lyapunov exponent for c"2)91, X"g by the addition of periodic torque. (b) The
Lyapunov exponent for c"3)03, XOg by the addition of periodic torque.

Figure 20. (a) Time history for c"3)03 by the addition of dither signals; (b) phase portrait for uncontrolled
system; (c) phase portrait for controlled system.
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Figure 21. (a)}(d) Phase portraits of delayed feedback control for c"2)91.
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12. ADAPTIVE CONTROL

An adaptive control algorithm can be extended to multi-parameter and
higher-dimensional non-linear system [17]. This control law is remarkably e!ective in
returning a system to its original periodic solution by a perturbation in the system
parameter changes of the dynamical behavior. A simple and e!ective adaptive control
algorithm has been suggested, which utilizes an error signal proportional to the di!erence
between the desired output and the actual output of the system. This error signal governs
the change of the parameter of the system, which readjusts so as to reduce the error to zero.
For a general N-dimensional dynamical system

XQ ,
dX

dq
"F(X, q, k),

where X,(X
1
, X

2
,2, X

N
) are variable and k,(k

1
, k

2
,2 , k

M
) are parameters, which

determine the nature of the dynamics; the prescription for e!ective adaptive control is
through the additional dynamics,

kR "eG(X!X
s
),

where X
s
is the desired steady state value, e indicates the sti!ness of control and G(X!X

s
)

is some suitable function with G(0)"0. It is important whether the control algorithm is
sensitive to the speci"c forms of the control dynamics, namely the choice for the function G.
In some situation, we can try G"y2, y1@2, sin y and y(1!y).



Figure 22. (a) Phase portraits before control for c"3)03; (b) after control (c) error function.

NON-LINEAR DYNAMIC ANALYSIS 345
Adaptive control can change chaos behavior into periodic motion. The result is shown in
Figure 22 for c"3)03. Figures 22(a), 22(b) and 22(b) show chaos behavior, periodic motion
respectively.

13. BANG-BANG CONTROL

De"ne the error function as follows:

e (t)"X (t)!X(t!¹ ), (24)

where ¹ is the external torque period. De"ne < (t)"e (t)2 which is always positive or zero:

<Q "2e (t)eR (t).

Let <Q )0 then <(t)P0, e(t)P0 and X(t)PX (t!¹).
By detecting equation (24) is less than or greater than zero, the control law can be

determined as follows.
Assume
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Figure 23. (a) Phase portraits; (b) time history for uncontrolled system when c"2)91, (c) Phase portraits;
(d) time history for controlled system when c"2)91.
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When the trajectory gets closer to our target periodic orbit, the control signal approaches
to zero. This is why the method is called &&bang}bang'' control. The phase diagram of the
uncontrolled system is shown in Figures 23(a), and in 23(c) the phase diagram after control
is shown for c"2)91. Figures 23(b) and 23(d) show time history of this system before and
after control.

14. CONCLUSIONS

The dynamical system of the rigid body with vibrating support exhibits a rich variety of
non-linear behavior as the parameters vary. Due to the e!ect of non-linearity, regular or
chaotic motions may appear. In this paper, analytical, and computational methods have
been employed to study the dynamical behavior of the non-linear system. The stability
conditions for the rigid-body system have been found by using the Lyapunov direct method.

The incremental harmonic balance (IHB) method deals with the system which has strong
non-linear terms. The phase portraits and bifurcation diagram obtained by IHB are in good
agreement with the solution obtained by numerical integration method. Finally, global
analysis of the basin boundary and fractal structure have been observed by the MICM
method.

We have demonstrated that simple control strategies can be e!ectively used to suppress
chaos in a non-linear dynamical system. We hope that similar control strategies can be
successfully implemented for more situations.
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